wein and Bailey in [2, pp. 195–197]. Similarly, one can derive an induction-free proof to the volume formula of generalized balls (2) using the Laplace transform. Finally, we remark that more properties on the gamma function and volume of Euclidean balls can be found in Stromberg [7, pp. 394–395].

Acknowledgment. This work was supported by NSERC and by the Grant In Aid of Okanagan University College.

REFERENCES

Proof Without Words: A Triangular Sum

\[t(n) = 1 + 2 + \cdots + n \rightarrow \sum_{k=0}^{n} t(2^k) = \frac{1}{3} t(2^{n+1} + 1) - 1 \]

\[t(2^{n+1} + 1) - 3: \]

\[3 \sum_{k=0}^{n} t(2^k) = t(2^{n+1} + 1) - 3 \]

Exercises: (a) \[\sum_{k=1}^{n} t(2^k - 1) = \frac{1}{3} t(2^{n+1} - 2) \]

(b) \[\sum_{k=0}^{n} t(3 \cdot 2^k - 1) = \frac{1}{3} [t(3 \cdot 2^{n+1} - 2) - 1] \]

——ROGER B. NELSEN
LEWIS & CLARK COLLEGE
PORTLAND OR 97219

© THE MATHEMATICAL ASSOCIATION OF AMERICA