On Candido’s Identity

CLAUDI ALSINA
Universitat Politècnica de Catalunya
08028 Barcelona, Spain
claudio.alsina@upc.edu

ROGER B. NELSEN
Lewis & Clark College
Portland, OR 97219, USA
nelsen@lclark.edu

Giacomo Candido [1] (1871–1941) proved the equality

\[[F_n^2 + F_{n+1}^2 + F_{n+2}^2]^2 = 2[F_n^4 + F_{n+1}^4 + F_{n+2}^4]. \]

where \(F_n \) denotes the \(n \)th Fibonacci number, by observing that for all reals \(x, y \) one has the curious identity

\[[x^2 + y^2 + (x + y)^2]^2 = [x^4 + y^4 + (x + y)^4]. \] (1)

Candido’s identity (1) can be easily shown to be true not only in \(\mathbb{R}^+ := [0, \infty) \) but also in any commutative ring and admits a clear visual description as presented recently in [3]. This identity raises the question: is (1) a characteristic property of the polynomial function \(y = x^2 \) in \(\mathbb{R}^+ \)? In order to answer this we reformulate (1) as follows. Let \(f \) be a function from \(\mathbb{R}^+ \) into \(\mathbb{R}^+ \) such that

\[f(f(x) + f(y) + f(x + y)) = 2[f(f(x)) + f(f(y)) + f(f(x + y))]. \] (2)

In general (2) admits trivial solutions like \(f \equiv 0 \) as well as many bizarre, highly discontinuous solutions. For example, define \(f \) to be any function from \(\mathbb{R}^+ \) to \(\mathbb{R}^+ \) with the property that \(f(x) = 0 \) whenever \(x \) is rational and \(f(x) \) is rational (but arbitrary!) whenever \(x \) is irrational. It is an exercise (try it) to show that every possible combination of rational or irrational values for the inputs \(x \) and \(y \) reduces (2) to the identity 0 = 0. But if we require \(f \) to be a continuous surjection on \(\mathbb{R}^+ \) with \(f(0) = 0 \), then we shall show that \(f \) can differ from the squaring function only by a multiplicative constant.

Lemma. For any two positive real numbers \(a \) and \(b \) with \(0 < a < b \), there are integers \(m \) and \(n \) such that \(a < 2^m 3^n < b \).

Proof. We consider three cases.

Case 1. If \(1 \leq a < b \) then \(0 \leq \log_2(a) < \log_2(b) \) and it follows that \(\log_2(a)/3^n < \log_2(b)/3^n < 1 \) for a sufficiently large positive integer \(n \). Since \(2^p \neq 3^q \) for all integers \(p, q \) such that \(p, q \neq 0 \), we deduce \(p \log 2 \neq q \log 3 \), i.e., \(\log_2(3) = \log 3/\log 2 \) is clearly irrational (see, e.g., [2]). So it follows from the equidistribution theorem [4,
Theorem 6.2, p. 72] that the sequence $\log_2(3), 2 \log_2(3), 3 \log_2(3), \ldots$ is uniformly distributed modulo 1, i.e., there is some positive integer m such that

$$\log_2(a)/3^n < \log_2(3^m) - \lfloor \log_2(3^m) \rfloor < \log_2(b)/3^n,$$

where $\lfloor x \rfloor$ denotes the greatest integer $k \leq x$. Let $r = \log_2(3^m)$ and let $s = r - \lfloor r \rfloor$. Then since $2^r = 3^m$, it follows that $2^s = 3^m/2^{\lfloor r \rfloor}$. With this notation

$$\log_2(a) < 3^n s < \log_2(b)$$

i.e., $a < 2^{(3^n s)} < b$, whence $a < (3^m/2^{\lfloor r \rfloor})3^n < b$. This shows that there is an integral power of 2 times an integral power of 3 between a and b.

Case 2. If $a < 1 < b$ we can use $n = m = 0$.

Case 3. If $0 < a < b \leq 1$ we will have $1 \leq 1/b < 1/a$ so by case 1 there exist integers m, n such that $1/b < 2^m 3^n < 1/a$ and therefore $a < 2^{-m} 3^{-n} < b$.

Now we prove the following:

Theorem. A continuous surjective function f from \mathbb{R}^+ to \mathbb{R}^+ such that $f(0) = 0$ satisfies Candido’s equation (2) if and only if

$$f(x) = kx^2,$$

where $k > 0$ is an arbitrary constant.

Proof. From Candido’s equality (1), it follows that (3) satisfies (2). Conversely, assume that f is a solution of (2) satisfying the above conditions. Since $f(0) = 0$ the substitution $y = 0$ into (2) yields that for all $x \geq 0$: $f(2f(x)) = 4f(f(x))$. Since f is surjective, $f(x)$ ranges throughout \mathbb{R}^+ as x ranges throughout \mathbb{R}^+, so that if we let $z = f(x)$, we have $f(2z) = 4f(z)$ for all z in \mathbb{R}^+. It follows by induction

$$f(2^n z) = (2^n)^2 f(z),$$

for all integers $n \geq 0$.

Since $f(z) = f(2^n (z/2^n)) = (2^n)^2 f(z/2^n)$ we get

$$f(2^{-n} z) = (2^{-n})^2 f(z)$$

for all integers $n \geq 1$. Thus from (4) and (5) we can conclude

$$f(2^n z) = (2^n)^2 f(z),$$

for all integers n. Next, set $y = x$ in (2) to obtain

$$f(2f(x) + f(2x)) = 4f(f(x)) + 2f(f(2x)),$$

and by virtue of (6), using $f(2x) = 4f(x)$, we get:

$$4f(3f(x)) = f(6f(x)) = 4f(f(x)) + 2 \cdot 4^2 \cdot f(f(x)) = 36f(f(x)),$$

i.e., with $f(x) = z \geq 0$ arbitrary, $f(3z) = 3^2 f(z)$ and by induction $f(3^m z) = (3^m)^2 f(z)$, whenever $m \geq 0$. As above, $f(z) = f(3^m (z/3^m)) = (3^m)^2 f(z/3^m)$ so $f(3^{-m} z) = (3^{-m})^2 f(z)$ and therefore

$$f(3^m z) = (3^m)^2 f(z),$$
for all integers \(m \). By means of (6) and (7), we obtain that for all integers \(m, n \):

\[
f(2^n 3^m) = (2^n 3^m)^2 f(1).
\] (8)

By our previous lemma any real numbers in \([0, \infty)\) may be approximated by a sequence in the set \(\{2^n 3^m | n, m \text{ integers}\} \) so from (8) and the continuity of \(f \) we can conclude that for all \(x \) in \(\mathbb{R}^+ \), \(f(x) = kx^2 \), with \(k = f(1) > 0 \) an arbitrary constant.

Acknowledgment. The authors thank the referees for their helpful remarks and suggestions which improved the final presentation of this paper.

REFERENCES

Monotonic Convergence to \(e \) via the Arithmetic-Geometric Mean

JÓZSEF SÁNDOR

Department of Mathematics and Computer Sciences
Babeș-Bolyai University
Str. Kogălniceanu Nr.1
400084 Cluj-Napoca, Romania
jjsandor@hotmail.com

Recently, Hansheng Yang and Heng Yang [3], by using only the arithmetic-geometric inequality, have proved the monotonicity of the sequences \((x_n) \), \((y_n) \), related to the number \(e \):

\[
x_n = \left(1 + \frac{1}{n}\right)^n, \quad y_n = \left(1 + \frac{1}{n}\right)^{n+1} \quad (n = 1, 2, \ldots)
\]

Such a method probably is an old one and has been applied e.g. in [1], or [2].

We want to show that the above monotonicities can be proved much easier than in [3].

Recall that the arithmetic-geometric inequality says that for \(a_1, \ldots, a_k > 0 \), and

\[
G_k = G_k(a_1, \ldots, a_k) = \sqrt[n]{a_1 \ldots a_k},
\]

\[
A_k = A_k(a_1, \ldots, a_k) = \frac{a_1 + \cdots + a_k}{k},
\]

we have

\[
G_k \leq A_k, \quad (1)
\]

with equality only when all \(a_i \) are equal.