Proof Without Words: Square Triangular Numbers and Almost Isosceles Pythagorean Triples

Roger B. Nelsen (nelsen@lclark.edu), Lewis & Clark College, Portland, OR

Theorem (1, §4.9). Let \(T_n = 1 + 2 + \cdots + n = n(n + 1)/2 \) denote the \(n \)th triangular number. Then
\[
T_n = k^2 \text{ if and only if } (2n + 2k + 1)^2 = (n + 2k)^2 + (n + 2k + 1)^2.
\]

Proof. (Using inclusion-exclusion, shown for \((n, k) = (8, 6)\).)

\[
(2n + 2k + 1)^2 = (n + 2k)^2 + (n + 2k + 1)^2 - (2k)^2 + 2n(n + 1),
\]

\[
(2n + 2k + 1)^2 = (n + 2k)^2 + (n + 2k + 1)^2 \iff 4k^2 = 4T_n.
\]

Summary. We illustrate wordlessly a one-to-one correspondence between square triangular numbers and almost isosceles Pythagorean triples.

References

http://dx.doi.org/10.4169/college.math.j.47.3.179

MSC: 05A15, 11D09