Proof Without Words: Each But Two Triangular Numbers Is a Sum of Three Triangular Numbers

Roger B. Nelsen (nelsen@lclark.edu), Lewis & Clark College, Portland, OR

Proposition. Each triangular number \(T_n = \sum_{k=1}^{n} k \) except \(n = 1, 3 \) is the sum of three triangular numbers.

Proof: \(T_{3n-1} = 2T_{2n-1} + T_n \) for \(n \geq 1 \).

\[
T_{3n} = 2T_{2n} + T_{n-1} \quad \text{for} \quad n \geq 2.
\]

\[
T_{3n+1} = T_{2n+1} + T_{2n} + T_n \quad \text{for} \quad n \geq 1.
\]

Summary. We show wordlessly that each triangular number except 1 and 6 is a sum of three triangular numbers.

http://dx.doi.org/10.4169/college.math.j.46.3.172

MSC: 11H99